Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Hortic ; 4(1): 15, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649966

RESUMEN

The molecular basis of orchid flower development involves a specific regulatory program in which MADS-box transcription factors play a central role. The recent 'perianth code' model hypothesizes that two types of higher-order heterotetrameric complexes, namely SP complex and L complex, play pivotal roles in the orchid perianth organ formation. Therefore, we explored their roles and searched for other components of the regulatory network.Through the combined analysis for transposase-accessible chromatin with high-throughput sequencing and RNA sequencing of the lip-like petal and lip from Phalaenopsis equestris var.trilip, transcription factor-(TF) genes involved in lip development were revealed. PeNAC67 encoding a NAC-type TF and PeSCL23 encoding a GRAS-type TF were differentially expressed between the lip-like petal and the lip. PeNAC67 interacted with and stabilized PeMADS3, which positively regulated the development of lip-like petal to lip. PeSCL23 and PeNAC67 competitively bound with PeKAN2 and positively regulated the development of lip-like petal to petal by affecting the level of PeMADS3. PeKAN2 as an important TF that interacts with PeMADS3 and PeMADS9 can promote lip development. These results extend the 'perianth code' model and shed light on the complex regulation of orchid flower development.

2.
Plant Sci ; 342: 112026, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38342186

RESUMEN

Anthocyanins are among the main pigments involved in the colouration of Asiatic hybrid lily (Lilium spp.). Ethylene, a plant ripening hormone, plays an important role in promoting plant maturation and anthocyanin biosynthesis. However, whether and how ethylene regulates anthocyanin biosynthesis in lily tepals have not been characterized. Using yeast one-hybrid screening, we previously identified an APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) named LhERF4 as a potential inhibitor of LhMYBSPLATTER-mediated negative regulation of anthocyanin biosynthesis in lily. Here, transcript and protein analysis of LhERF4, a transcriptional repressor, revealed that LhERF4 directly binds to the promoter of LhMYBSPLATTER. In addition, overexpression of LhERF4 in lily tepals negatively regulates the expression of key structural genes and the total anthocyanin content by suppressing the LhMYBSPLATTER gene. Moreover, the LhERF4 gene inhibits anthocyanin biosynthesis in response to ethylene, affecting anthocyanin accumulation and pigmentation in lily tepals. Collectively, our findings will advance and elucidate a novel regulatory network of anthocyanin biosynthesis in lily, and this research provides new insight into colouration regulation.


Asunto(s)
Antocianinas , Lilium , Antocianinas/metabolismo , Lilium/metabolismo , Flores/genética , Factores de Transcripción/metabolismo , Etilenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
3.
Mol Genet Genomics ; 299(1): 13, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396305

RESUMEN

Gamma (γ)-ray irradiation is one of the important modern breeding methods. Gamma-ray irradiation can affect the growth rate and other characteristics of plants. Plant growth rate is crucial for plants. In horticultural crops, the growth rate of plants is closely related to the growth of leaves and flowering time, both of which have important ornamental value. In this study, 60Co-γ-ray was used to treat P. equestris plants. After irradiation, the plant's leaf growth rate increased, and sugar content and antioxidant enzyme activity increased. Therefore, we used RNA-seq technology to analyze the differential gene expression and pathways of control leaves and irradiated leaves. Through transcriptome analysis, we investigated the reasons for the rapid growth of P. equestris leaves after irradiation. In the analysis, genes related to cell wall relaxation and glucose metabolism showed differential expression. In addition, the expression level of genes encoding ROS scavenging enzyme synthesis regulatory genes increased after irradiation. We identified two genes related to P. equestris leaf growth using VIGS technology: PeNGA and PeEXPA10. The expression of PeEXPA10, a gene related to cell wall expansion, was down-regulated, cell wall expansion ability decreased, cell size decreased, and leaf growth rate slowed down. The TCP-NGATHA (NGA) molecular regulatory module plays a crucial role in cell proliferation. When the expression of the PeNGA gene decreases, the leaf growth rate increases, and the number of cells increases. After irradiation, PeNGA and PeEXPA10 affect the growth of P. equestris leaves by influencing cell proliferation and cell expansion, respectively. In addition, many genes in the plant hormone signaling pathway show differential expression after irradiation, indicating the crucial role of plant hormones in plant leaf growth. This provides a theoretical basis for future research on leaf development and biological breeding.


Asunto(s)
Orchidaceae , Fitomejoramiento , Perfilación de la Expresión Génica , Genes de Plantas , RNA-Seq , Antioxidantes/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Hojas de la Planta , Regulación de la Expresión Génica de las Plantas , Transcriptoma/genética
4.
Hortic Res ; 10(9): uhad167, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37779886

RESUMEN

The Asiatic hybrid lily (Lilium spp.) is a horticultural crop with high commercial value and diverse anthocyanin pigmentation patterns. However, the regulatory mechanism underlying lily flower color has been largely unexplored. Here, we identified a WRKY transcription factor from lily tepals, LhWRKY44, whose expression was closely associated with anthocyanin accumulation. Functional verification indicated that LhWRKY44 positively regulated anthocyanin accumulation. LhWRKY44 physically interacted with LhMYBSPLATTER and directly bound to the LhMYBSPLATTER promoter, which enhanced the effect of the LhMYBSPLATTER-LhbHLH2 MBW complex activator on anthocyanin accumulation. Moreover, EMSA and dual-luciferase assays revealed that LhWRKY44 activated and bound to the promoters of gene LhF3H and the intracellular anthocyanin-related glutathione S-transferase gene LhGST. Interestingly, our further results showed that LhWRKY44 participated in light and drought-induced anthocyanin accumulation, and improved the drought tolerance in lily via activating stress-related genes. These results generated a multifaceted regulatory mechanism for the LhWRKY44-meditaed enhancement by the environmental signal pathway of anthocyanin accumulation and expanded our understanding of the WRKY-mediated transcriptional regulatory hierarchy modulating anthocyanin accumulation in Asiatic hybrid lilies.

5.
Plant Sci ; 335: 111678, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37385384

RESUMEN

Rosa chinensis is an important economic and ornamental crop, but powdery mildew greatly reduces its ornamental and economic value. The RcCPR5 gene, encoding a constitutive expressor of pathogenesis-related genes, has two splicing variants in R. chinensis. Compared with RcCPR5-1, RcCPR5-2 has a large C-terminal deletion. During disease development, RcCPR5-2 responded quickly and coordinated with RcCPR5-1 to resist the invasion of the powdery mildew pathogen. In virus-induced gene silencing experiments, down-regulation of RcCPR5 improved the resistance of R. chinensis to powdery mildew. This was confirmed to be broad-spectrum resistance. In the absence of pathogen infection, RcCPR5-1 and RcCPR5-2 formed homodimers and heterodimers to regulate plant growth; but when infected by the powdery mildew pathogen, the RcCPR5-1 and RcCPR5-2 complexes disassociated and released RcSIM/RcSMR to induce effector-triggered immunity, thereby inducing resistance to pathogen infection.


Asunto(s)
Ascomicetos , Rosa , Proteínas de Plantas/genética , Rosa/genética , Resistencia a la Enfermedad/genética , Ascomicetos/fisiología , Erysiphe , Enfermedades de las Plantas/genética
6.
Hortic Res ; 10(6): uhad080, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37323234

RESUMEN

Rose (Rosa hybrida) is one of most famous ornamental plants in the world, and its commodity value largely depends on its flower color. However, the regulatory mechanism underlying rose flower color is still unclear. In this study, we found that a key R2R3-MYB transcription factor, RcMYB1, plays a central role in rose anthocyanin biosynthesis. Overexpression of RcMYB1 significantly promoted anthocyanin accumulation in both white rose petals and tobacco leaves. In 35S:RcMYB1 transgenic lines, a significant accumulation of anthocyanins occurred in leaves and petioles. We further identified two MBW complexes (RcMYB1-RcBHLH42-RcTTG1; RcMYB1-RcEGL1-RcTTG1) associated with anthocyanin accumulation. Yeast one-hybrid and luciferase assays showed that RcMYB1 could active its own gene promoter and those of other EBGs (early anthocyanin biosynthesis genes) and LBGs (late anthocyanin biosynthesis genes). In addition, both of the MBW complexes enhanced the transcriptional activity of RcMYB1 and LBGs. Interestingly, our results also indicate that RcMYB1 is involved in the metabolic regulation of carotenoids and volatile aroma. In summary, we found that RcMYB1 widely participates in the transcriptional regulation of ABGs (anthocyanin biosynthesis genes), indicative of its central role in the regulation of anthocyanin accumulation in rose. Our results provide a theoretical basis for the further improvement of the flower color trait in rose by breeding or genetic modification.

7.
Plant Mol Biol ; 111(4-5): 439-454, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36913074

RESUMEN

KEY MESSAGE: Analysis of the flower color formation mechanism of 'Rhapsody in Blue' by BF and WF transcriptomes reveals that RhF3'H and RhGT74F2 play a key role in flower color formation. Rosa hybrida has colorful flowers and a high ornamental value. Although rose flowers have a wide range of colors, no blue roses exist in nature, and the reason for this is unclear. In this study, the blue-purple petals (BF) of the rose variety 'Rhapsody in Blue' and the white petals (WF) of its natural mutant were subjected to transcriptome analysis to find genes related to the formation of the blue-purple color. The results showed that the anthocyanin content was significantly higher in BF than in WF. A total of 1077 differentially expressed genes (DEGs) were detected by RNA-Seq analysis, of which 555 were up-regulated and 522 were down-regulated in the WF vs. BF petals. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the DEGs revealed that a single gene up-regulated in BF was related to multiple metabolic pathways including metabolic process, cellular process, protein-containing complex, etc. Additionally, the transcript levels of most of the structural genes related to anthocyanin synthesis were significantly higher in BF than in WF. Selected genes were analyzed by qRT-PCR and the results were highly consistent with the RNA-Seq results. The functions of RhF3'H and RhGT74F2 were verified by transient overexpression analyses, and the results confirmed that both affect the accumulation of anthocyanins in 'Rhapsody in Blue'. We have obtained comprehensive transcriptome data for the rose variety 'Rhapsody in Blue'. Our results provide new insights into the mechanisms underlying rose color formation and even blue rose formation.


Asunto(s)
Rosa , Transcriptoma , Antocianinas/metabolismo , Rosa/genética , Fitomejoramiento , Perfilación de la Expresión Génica/métodos
8.
Plant Physiol Biochem ; 196: 683-694, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36801773

RESUMEN

Phalaenopsis equestris is an ornamental plant with very large leaves. In this study, we identified genes related to the regulation of leaf development in Phalaenopsis and explored their mechanism of action. Sequence alignment and phylogenetic analyses revealed that PeGRF6 in the PeGRF family of P. equestris has similarities with the Arabidopsis genes AtGRF1 and AtGRF2, which are known to be involved in the regulation of leaf development. Among the PeGRFs, PeGRF6 was continuously and stably expressed at various stages of leaf development. The functions of PeGRF6 and of its complex formed with PeGIF1 in leaf development were verified by virus-induced gene silencing (VIGS) technology. The results show that the PeGRF6-PeGIF1 complex forms in the nucleus and positively regulates leaf cell proliferation via influencing cell size. Interestingly, VIGS suppression of PeGRF6 resulted in anthocyanin accumulation in Phalaenopsis leaves. Analyses of the regulatory mechanism of the miR396-PeGRF6 model based on the P. equestris small RNA library constructed here suggested that PeGRF6 transcripts are cleaved by Peq-miR396. These results show that, compared with PeGRF6 or PeGIF1 alone, the PeGRF6-PeGIF1 complex plays a more important role in the leaf development of Phalaenopsis, possibly by regulating the expression of cell cycle-related genes.


Asunto(s)
Arabidopsis , MicroARNs , Orchidaceae , Regulación de la Expresión Génica de las Plantas , Filogenia , MicroARNs/genética , MicroARNs/metabolismo , Plantas Modificadas Genéticamente/genética , Hojas de la Planta/metabolismo , Arabidopsis/metabolismo , Proliferación Celular/genética , Orchidaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
J Plant Physiol ; 279: 153857, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36370614

RESUMEN

Vacuolar sodium/proton Na+(K+)/H+ exchanger (NHX) influence color formation because of their effects on cellular pH and Na+/K+ homeostasis. Research regarding NHXs has mainly focused on the vacuolar NHX family members. However, the NHX functions related to Phalaenopsis flower coloration remain relatively uncharacterized. In this study, we cloned and characterized PeNHX1, a vacuolar cation/H+ antiporter-encoding gene that is highly expressed in the Phalaenopsis equestris (orchid) flower lip. Phylogenetic and sequence analyses showed that PeNHX1 is a vacuolar NHX protein family member that is similar to other known vacuolar antiporters. The PeNHX1-GFP fusion protein was clearly localized to the vacuolar membrane in a transient transfection assay. A quantitative real-time PCR analysis revealed the increased expression of PeNHX1 in different flower developmental stages. Moreover, it was more highly expressed in the lip than in the other flower organs. On the basis of virus-induced gene silencing, we determined that decreased PeNHX1 expression significantly reduces P. equestris petal coloration. Furthermore, the overexpression of PeNHX1 in Phalaenopsis Big Chili caused the pH to increase and the petal color to change from red to blue. The results indicate that NHX1 may mediates the Na + or K+/H+ exchange, thereby regulating the vacuolar pH to promote blue coloration. This research provides a theoretical basis for the development of orchid varieties with blue flowers.


Asunto(s)
Orchidaceae , Orchidaceae/genética , Antiportadores , Protones , Filogenia , Cationes , Flores/genética , Antiportadores de Potasio-Hidrógeno
10.
Plant Physiol ; 190(1): 387-402, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35670734

RESUMEN

The bulbil is an important vegetative reproductive organ in triploid tiger lily (Lilium lancifolium). Based on our previously obtained transcriptome data, we screened two WUSCHEL-related homeobox (WOX) genes closely related to bulbil formation, LlWOX9 and LlWOX11. However, the biological functions and regulatory mechanisms of LlWOX9 and LlWOX11 are unclear. In this study, we cloned the full-length coding sequences of LlWOX9 and LlWOX11. Transgenic Arabidopsis (Arabidopsis thaliana) showed increased branch numbers, and the overexpression of LlWOX9 and LlWOX11 in stem segments promoted bulbil formation, while the silencing of LlWOX9 and LlWOX11 inhibited bulbil formation, indicating that LlWOX9 and LlWOX11 are positive regulators of bulbil formation. Cytokinin type-B response regulators could bind to the promoters of LlWOX9 and LlWOX11 and promote their transcription. LlWOX11 could enhance cytokinin pathway signaling by inhibiting the transcription of type-A LlRR9. Our study enriches the understanding of the regulation of plant development by the WOX gene family and lays a foundation for further research on the molecular mechanism of bulbil formation in lily.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lilium , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Homeobox/genética , Genes de Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lilium/genética , Lilium/metabolismo
11.
BMC Plant Biol ; 21(1): 563, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34844560

RESUMEN

BACKGROUND: Anthocyanins, which belong to flavonoids, are widely colored among red-purple pigments in the Asiatic hybrid lilies (Lilium spp.). Transcription factor (TF) LhMYBSPLATTER (formerly known as LhMYB12-Lat), identified as the major kernel protein, regulating the anthocyanin biosynthesis pathway in 'Tiny Padhye' of Tango Series cultivars, which the pigmentation density is high in the lower half of tepals and this patterning is of exceptional ornamental value. However, the research on mechanism of regulating the spatial and temporal expression differences of LhMYBSPLATTER, which belongs to the R2R3-MYB subfamily, is still not well established. To explore the molecular mechanism of directly related regulatory proteins of LhMYBSPLATTER in the anthocyanin pigmentation, the yeast one-hybrid (Y1H) cDNA library was constructed and characterized. RESULTS: In this study, we describe a yeast one-hybrid library to screen transcription factors that regulate LhMYBSPLATTER gene expression in Lilium, with the library recombinant efficiency of over 98%. The lengths of inserted fragments ranged from 400 to 2000 bp, and the library capacity reached 1.6 × 106 CFU of cDNA insert, which is suitable to fulfill subsequent screening. Finally, seven prey proteins, including BTF3, MYB4, IAA6-like, ERF4, ARR1, ERF WIN1-like, and ERF061 were screened by the recombinant bait plasmid and verified by interaction with the LhMYBSPLATTER promoter. Among them, ERFs, AUX/IAA, and BTF3 may participate in the negative regulation of the anthocyanin biosynthesis pathway in Lilium. CONCLUSION: A yeast one-hybrid library of lily was successfully constructed in the tepals for the first time. Seven candidate TFs of LhMYBSPLATTER were screened, which may provide a theoretical basis for the study of floral pigmentation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Lilium/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Clonación Molecular , ADN de Plantas , Lilium/genética , Proteínas de Plantas/genética , Plásmidos , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
12.
Antioxidants (Basel) ; 10(10)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34679768

RESUMEN

The genus Lilium contains more than 100 wild species and numerous hybrid varieties. Some species of them have been used as medicine and food since ancient times. However, the research on the active components and the medical properties of lilies has only focused on a few species. In this study, the total phenolic acid content (TPC), total flavonoid content (TFC), and antioxidant capacity of 22 representative lilies were systematically investigated. The results showed that the TPC, TFC and antioxidant activity were highly variable among different lilies, but they were significantly positively correlated. Hierarchical cluster analysis indicated that L. henryi and L. regale were arranged in one group characterized by the highest TPC, TFC and antioxidant capacity, followed by Oriental hybrids and Trumpet and Oriental hybrids. The traditional edible and medicinal lilies were clustered in low TPC, TFC and antioxidant capacity group. A total of 577 secondary metabolites, including 201 flavonoids, 153 phenolic acids, were identified in the five species with great differences in antioxidant capacity by extensive targeted metabonomics. Differentially accumulated metabolites (DAMs) analysis reviewed that the DAMs were mainly enriched in secondary metabolic pathways such as isoflavonoid, folate, flavonoid, flavone, flavonol, phenylpropanoid, isoquinoline alkaloid biosynthesis, nicotinate and nicotinamide metabolism and so on. Correlation analysis identified that 64 metabolites were significantly positively correlated with antioxidant capacity (r ≥ 0.9 and p < 0.0001). These results suggested that the genus Lilium has great biodiversity in bioactive components. The data obtained greatly expand our knowledge of the bioactive constituents of Lilium spp. Additionally, it also highlights the potential application of Lilium plants as antioxidants, functional ingredients, cosmetic products and nutraceuticals.

13.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805045

RESUMEN

The bulbil is an important vegetative reproductive organ in triploid Lilium lancifolium whose development is promoted by cytokinins. Type-B response regulators (RRs) are critical regulators that mediate primary cytokinin responses and promote cytokinin-induced gene expression. However, the function of cytokinin type-B Arabidopsis RRs (ARRs) in regulating bulbil formation is unclear. In this study, we identified five type-B LlRRs, LlRR1, LlRR2, LlRR10, LlRR11 and LlRR12, in L. lancifolium for the first time. The five LlRRs encode proteins of 715, 675, 573, 582 and 647 amino acids. All of the regulators belong to the B-I subfamily, whose members typically contain a conserved CheY-homologous receiver (REC) domain and an Myb DNA-binding (MYB) domain at the N-terminus. As transcription factors, all five type-B LlRRs localize at the nucleus and are widely expressed in plant tissues, especially during axillary meristem (AM) formation. Functional analysis showed that type-B LlRRs are involved in bulbil formation in a functionally redundant manner and can activate LlRR9 expression. In summary, our study elucidates the process by which cytokinins regulate bulbil initiation in L. lancifolium through type-B LlRRs and lays a foundation for research on the molecular mechanism of bulbil formation in the lily.


Asunto(s)
Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Lilium/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Silenciador del Gen , Lilium/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Conformación Molecular , Péptidos/química , Fenotipo , Dominios Proteicos , Transducción de Señal
14.
Plant Cell Rep ; 40(1): 85-95, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33210154

RESUMEN

KEY MESSAGE: LhGST, an anthocyanin-related GST gene, was identified from Asiatic hybrid lilies. Expression and functional analyses demonstrated that LhGST might be involved in anthocyanin sequestration in lily tepals. Anthocyanins are responsible for the pink, red and purple pigmentation of flowers in Asiatic hybrid lilies, synthesized at the cytoplasmic surface of the endoplasmic reticulum (ER) and then transported to the vacuole. To date, the mechanism involved in the intracellular transport of anthocyanins in lilies has not been well elucidated. Here, full-length glutathione S-transferase gene (LhGST) was identified from lilies. Expression analysis revealed that LhGST was positively correlated with anthocyanin accumulation. Phylogenetic tree analysis showed that LhGST clustered with other anthocyanin-related GSTs in the same phi clade. Moreover, functional complementation of an Arabidopsis tt19 mutant demonstrated that LhGST might be involved in anthocyanin accumulation in lily tepals. Additionally, according to phenotype analysis, LhGST was found to be correlated with the transport of anthocyanin in lilies by virus-induced gene silencing (VIGS) assay. In addition, cis-element analysis of the LhGST promoter showed the presence of ABA-, auxin-, MeJA-, gibberellin-, light-, and stress-responsive elements and an MYB recognition site (MRS, CCGTTG). Yeast one-hybrid and dual-luciferase report assays revealed that the promoter of LhGST was activated by LhMYB12-lat, which is a key R2R3-MYB transcription factor that regulates anthocyanin biosynthesis in lilies. In conclusion, our results revealed that LhGST plays a key role in anthocyanin transport and accumulation in the tepals of lilies.


Asunto(s)
Antocianinas/metabolismo , Glutatión Transferasa/genética , Lilium/genética , Proteínas de Plantas/genética , Antocianinas/genética , Arabidopsis/genética , Quimera , Flores/genética , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa/metabolismo , Lilium/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
15.
Plant Cell Rep ; 39(7): 861-872, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32270280

RESUMEN

KEY MESSAGE: The cytokinin pathway promotes the initiation of bulbil formation, and iPA may an important type of cytokinin during bulbil formation in Lilium lancifolium. Bulbils are important vegetative reproductive organs in triploid Lilium lancifolium. We previously showed that cytokinins are involved in bulbil formation, but how cytokinins participate in bulbil formation is not clear. In this study, bulbil formation was divided into three stages on the basis of anatomical and histological observations: the bulbil initiation stage, bulbil primordium-formation stage and bulbil structure-formation stage. The results indicated that iPA was the most critical cytokinin during the bulbil initiation. qRT-PCR revealed that increased iPA content during bulbil initiation was mainly due to increased expression of cytokinin synthesis genes (IPT1/5) and cytokinin activation genes (LOG1/3/5/7) and significantly decreased expression of the cytokinin degradation gene CKX4. Exogenous 6-BA and lovastatin affected the cytokinin pathway and promoted or inhibited bulbil initiation by increasing or decreasing the content of endogenous iPA, respectively. In summary, we demonstrate that cytokinins positively regulate bulbil formation and provide preliminary insight into the regulatory mechanisms by which the cytokinin pathway promotes bulbil initiation.


Asunto(s)
Citocininas/farmacología , Lilium/anatomía & histología , Compuestos de Bencilo/farmacología , Citocininas/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lilium/efectos de los fármacos , Lilium/genética , Lovastatina/farmacología , Modelos Biológicos , Purinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
16.
Genes (Basel) ; 11(4)2020 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-32290583

RESUMEN

Previous studies have suggested that multidrug and toxic compound extrusion (MATE) proteins might be involved in flavonoid transportation. However, whether MATE proteins are involved in anthocyanin accumulation in Lilium is unclear. Here, a flavonoid transport-related MATE candidate gene, LhDTX35, was cloned from the Asiatic hybrid lily cultivar 'Tiny Padhye' by rapid amplification of 5' and 3' cDNA ends (RACE) and found to encode 507 amino acids. BLASTx results indicated that LhDTX35 showed high homology to the DTX35 genes of other species. Bioinformatics analysis predicted that the protein encoded by LhDTX35 possessed 12 typical transmembrane segments and had functional domains typical of the MATE-like superfamily. Phylogenetic analysis grouped LhDTX35 in the same clade as the DTX35 of other species. Notably, the expression pattern of LhDTX35 was positively correlated with floral anthocyanin accumulation in 'Tiny Padhye'. A subcellular localization assay showed that the protein encoded by LhDTX35 was plasmalemma localized but not nuclear, indicating that the LhDTX35 gene may function as a carrier protein to transport anthocyanins in Lilium. Functional complementation of the ArabidopsisDTX35 gene demonstrated that LhDTX35 could restore silique-infertility and the anthocyaninless phenotype of an ArabidopsisDTX35 mutant. These results indicated that LhDTX35 might be involved in anthocyanin accumulation in Lilium.


Asunto(s)
Flavonoides/metabolismo , Flores/metabolismo , Lilium/metabolismo , Extractos Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Clonación Molecular , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Lilium/genética , Lilium/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/genética
17.
PeerJ ; 6: e4424, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29576941

RESUMEN

Virus-induced gene silencing (VIGS) is an attractive tool for determining gene function in plants. The present study constitutes the first application of VIGS in S. pseudocapsicum, which has great ornamental and pharmaceutical value, using tobacco rattle virus (TRV) vectors. Two marker genes, PHYTOENE DESATURASE (PDS) and Mg-chelatase H subunit (ChlH), were used to test the VIGS system in S. pseudocapsicum. The photobleaching and yellow-leaf phenotypes of the silenced plants were shown to significantly correlate with the down-regulation of endogenous SpPDS and SpChlH, respectively (P ≤ 0.05). Moreover, the parameters potentially affecting the efficiency of VIGS in S. pseudocapsicum, including the Agrobacterium strain and the inoculation method (leaf syringe-infiltration, sprout vacuum-infiltration and seed vacuum-infiltration), were compared. The optimized VIGS parameters were the leaf syringe-infiltration method, the Agrobacterium strain GV3101 and the growth of agro-inoculated plants at 25°. With these parameters, the silencing efficiency of SpPDS and SpChlH could reach approximately 50% in S. pseudocapsicum. Additionally, the suitability of various reference genes was screened by RT-qPCR using three candidate genes, and the results demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) can serve as a suitable reference for assessing the gene expression levels of VIGS systems in S. pseudocapsicum. The proven application of VIGS in S. pseudocapsicum and the characterization of a suitable reference gene in the present work will expedite the functional characterization of novel genes in S. pseudocapsicum.

18.
Front Plant Sci ; 8: 1508, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912794

RESUMEN

Aerial bulbils are an important propagative organ, playing an important role in population expansion. However, the detailed gene regulatory patterns and molecular mechanism underlying bulbil formation remain unclear. Triploid Lilium lancifolium, which develops many aerial bulbils on the leaf axils of middle-upper stem, is a useful species for investigating bulbil formation. To investigate the mechanism of bulbil formation in triploid L. lancifolium, we performed histological and transcriptomic analyses using samples of leaf axils located in the upper and lower stem of triploid L. lancifolium during bulbil formation. Histological results indicated that the bulbils of triploid L. lancifolium are derived from axillary meristems that initiate de novo from cells on the adaxial side of the petiole base. Transcriptomic analysis generated ~650 million high-quality reads and 11,871 differentially expressed genes (DEGs). Functional analysis showed that the DEGs were significantly enriched in starch and sucrose metabolism and plant hormone signal transduction. Starch synthesis and accumulation likely promoted the initiation of upper bulbils in triploid L. lancifolium. Hormone-associated pathways exhibited distinct patterns of change in each sample. Auxin likely promoted the initiation of bulbils and then inhibited further bulbil formation. High biosynthesis and low degradation of cytokinin might have led to bulbil formation in the upper leaf axil. The present study achieved a global transcriptomic analysis focused on gene expression changes and pathways' enrichment during upper bulbil formation in triploid L. lancifolium, laying a solid foundation for future molecular studies on bulbil formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...